
THE NAS SYSTEMS DIVISION QUARTERLY WINTER 1999

gridpoints

2 WINTER 1999

News from NAS
Scheduling tool adapted for the Grid

NAS hosts first Grid Forum

The NAS Systems Division hosted the first “Grid Forum”
workshop in June, drawing an unexpectedly large audience of
about 150 researchers. The meeting included researchers
from NASA, the National Center for Supercomputing Appli-
cations (NCSA), the National Partnership for Advanced
Computational Infrastructure (NPACI), the U.S. Depart-
ment of Energy, and several other institutions. Participants
discussed the need to create a close-knit community of re-
searchers working on computational grids such as the NASA
Information Power Grid, the NCSA Alliance’s National Tech-
nology Grid, and NPACI’s Metasystems effort.

By the end of the three-day meeting, participants had set up
several working groups in areas such as scheduling, security,
and account management, and had agreed to establish the
Grid Forum as a permanent, informal consortium. One of
the body’s main functions will be to promote common stan-
dards for the various grid-building efforts.

At a subsequent Grid Forum meeting, held October 19-21 in
Chicago, participants discussed “rules of engagement” for the
standardization process. The working groups also met to
identify technical challenges requiring cooperation among
grid-builders. “Potentially, the Grid Forum will be a great
resource for people to learn about grids and how to interact
with them in a systematic manner,” says Mary Hultquist, a
researcher in the NAS grid environments group.

Virtual clinic
headlines NASA
SC99 display

The “Virtual Collaborative
Clinic” (VCC), a
telemedicine application
that allows physicians at

multiple sites to interact in real time with shared three-dimen-
sional images of human organs, was chosen as the featured dem-
onstration at the NASA exhibit booth at the SC99 High Perfor-
mance Networking and Computing Conference in Portland,
Oregon. The demonstration, highlighted in publicity materials
published by SC99 organizers, is one of more than 30 demos and
eight videos to be presented by NASA centers at the November
conference. (For a complete list of demonstrations, see page 29.)

Dr. Muriel Ross and colleagues at the NASA Ames Center for
Bioinformatics created the VCC, which uses high-bandwidth net-
works and multicasting techniques to send three-dimensional,
high-resolution stereo medical images to physicians at geographi-
cally dispersed locations. This way of sharing medical data could
one day help physicians to care for people living in remote rural
areas, says Ross, or even to monitor the health of astronauts
aboard the International Space Station. “The idea is to bring the
clinic to the patient rather than the patient to the clinic,” she
says.

In September, NAS computer scientists finished upgrading the
Portable Batch System (PBS), the division’s main
supercomputing job queuing system, to make it a cornerstone of
the distributed, heterogeneous Information Power Grid net-
work. “There were two main projects,” says Bhroam Mann, a
researcher in the NAS grid environments group. “The first was
to extend PBS to allow time-based advance reservations of PBS-
managed resources. The other was to allow PBS to communicate
with Globus,” the metacomputing toolkit developed at Argonne
National Laboratory and the University of Southern California.

In the past, researchers who wanted to use multiple, distributed
computing systems simultaneously had to explicitly reserve these
resources in advance. The changes to PBS give the system the
ability to make these reservations automatically. The new version
of PBS also acts as a user interface for Globus, a set of com-
mands used to execute jobs on remote computers (see story, page
20). “Globus-aware PBS will allow users to more easily submit
their work to the Grid using the familiar PBS interface, without
having to learn a new batch queuing system,” says Mann. “Sci-
entists want to spend their time doing science, not on new
methods for submitting their work.”

AM
ES

 C
EN

TE
R

FO
R

BI
OI

NF
OR

M
AT

IC
S

In a much-publicized demonstration in May, Ross and her
colleagues used the NAS Facility’s Visualization Laboratory
to lead the largest VCC session to date. The event linked
researchers from the Cleveland Clinic in Cleveland, Ohio,
the Navajo Medical Service Center in Shiprock, New
Mexico, and two other locations in California. At SC99,
researchers from the Bioinformatics Center will report their
findings from the May demo and will conduct a live dem-
onstration of the VCC.

3gridpoints

News from NAS
having all these resources in perusable form,” he says. “And
using the VRMLs, they get a more visceral feel for what the
terrain is like.”

While a final landing site for the Mars Surveyor 2001 probe
will soon be selected from a group of five finalists, the Web
site will continue to be useful to scientists planning mis-
sions in 2003 and 2005, Deardorff says. In fact, the Mars
Web site project is merely part of a longer-term research
effort on networked environments as forums for innovation
in science and engineering. Says Deardorff, “We’re using
this as a testbed for developing collaborative technologies.”

Web site helps
Mars trip
planners

What’s harder than
getting everyone to
agree on where to
take the next family
vacation? Getting
planetary scientists
to agree on where to

land the next Mars probe. Now researchers involved in the
planned Mars Surveyor 2001 mission can carry on their de-
bate 24 hours a day—and refer to hundreds of three-dimen-
sional images of the Martian surface—using the NASA
Mars Landing Site Web site (marsoweb. nas.nasa.gov/
landingsites).

The creators of the site, which moved from another Ames
division to the NAS Systems Division in June, hope it will
give all interested scientists an equal chance to make their
cases for their favorite landing spots. Past landing sites for
Mars missions such as Pathfinder have been chosen over the
course of a few contentious meetings between mission plan-
ners and scientists, explains Glenn Deardorff, a researcher in
the NAS data analysis group who helped build the site. Ge-
ologists, climatologists, astrobiologists, and others would
each argue for the spot they considered most scientifically
interesting, while mission planners emphasized the sites of-
fering the greatest safety and mission longevity.

Such meetings are still crucial for current and planned mis-
sions such as Mars Surveyor 2001 and the Mars Polar
Lander. But using the site’s so-called “advanced collabora-
tion environment,” researchers can examine their colleagues’
data, review archives of landing site workshops, learn about
engineering constraints, and read and respond to each oth-
ers’ arguments at their leisure.

Adding depth to the site—literally—is a library of three-
dimensional models of more than 70 proposed landing sites
encoded in Virtual Reality Modeling Language (VRML)
format. Researcher Tim Sandstrom of the NAS data analysis
group created the models by texture-mapping photographs
of each Mars region onto a terrain grid based on data from
the Viking spacecraft. The models can be viewed from any
angle, accenting the planet’s topography in a way that two-
dimensional images can’t.

Deardorff says the VRMLs have provoked a “very enthusias-
tic response” among researchers using the site. “They like

NAS, SGI collaborate
on 512-processor Origin2000

Silicon Graphics Inc. (SGI), a leader in the construction of
supercomputers, and the NAS Systems Division, a leading
user, have a common interest in perfecting high perfor-
mance computing systems for the needs of the research
community. In 1998, that joint interest became concrete in
the form of an official memorandum of understanding, call-
ing for the joint development of a 256-processor SGI Ori-
gin2000 supercomputer (see story, page 17). Completed in
November 1998, the 256-processor machine, named Steger,
surpassed benchmarks set by the division’s fastest Cray
supercomputers by fivefold. Steger, the first “single system
image CC-NUMA” machine to reach 256 processors, has
since become a commercial product of SGI with a handful
sold to some of its major customers. (A single system image
computer appears to the user as if it were a single processor
with a unified operating system.)

Now NAS and SGI have expanded their partnership by an-
other power of two. In May, NASA Administrator Daniel
Goldin and SGI officials signed a new agreement calling for
the creation of the world’s largest single system image
shared-memory computer, a 512-processor Origin2000.
SGI delivered the system to the NAS Facility in July. When

○ ○

M
IC

HA
EL

 B
OS

W
EL

L

CO
RB

Y
J.

 W
AS

TE
,

NA
SA

 J
PL

4 WINTER 1999

running highly parallel software, researchers anticipate, the
512-processor machine will outperform its 256-processor
cousin by a factor of three or more.

Successes with Steger made the NAS Facility a logical place
to build a 512-processor machine, says Division Chief Bill
Feiereisen. NAS engineers’ experience with Steger will help
them configure and support the 512-processor machine,
which will tackle even harder problems and larger datasets.

Division managers named the 512-processor machine
Lomax after the late Harvard Lomax, chief of the Ames
Computational Fluid Dynamics (CFD) branch from 1970
to 1992. The machine has 196 gigabytes of memory and
supports 1.74 terabytes of attached RAID storage (Redun-
dant Arrays of Inexpensive Disks). Jim Taft, a senior con-
sultant in the NAS Systems Division, predicts that by the
end of 1999 Lomax will achieve 100 billion floating point
operations per second (GFLOPS) when running the pro-
duction CFD code OVERFLOW, a performance level five
times greater than that of Steger. (This improvement will
not be wholly attributable to Lomax’s greater number of
processors, Taft points out. The machine also has more
cache memory per processor, and the OVERFLOW code
itself has been modified to run faster on 512 processors.) A
limited number of benchmark timings for the 512-processor
machine will be available by mid-November, Taft says—in
time for him to present them at the SC99 High Perfor-
mance Networking and Computing Conference (see page
29). By April 2000, selected users funded by NASA’s High
Performance Computing and Communications (HPCC)
program and the Information Technology (IT) Base R&T
program will have access to the machine. The new system
will eventually become a major resource for users of the
NASA Information Power Grid.

Officials at both NASA and SGI project that very large
multi-processor machines will have a significant impact on
the way large-scale science and engineering problems are
solved. The 512-processor system is already known to carry
out calculations far faster than the most powerful computers
built by Cray Research. “What used to take a month when
scheduled on the NAS Cray systems can now be [done]
overnight on the 512-CPU machine,” says Taft. Applica-
tions such as OVERFLOW and LAURA (the Langley
Aerothermodynamic Upwind Relaxation Algorithm, a pro-
gram for simulating airflow over vehicles in hypersonic
flight) will put all 512 processors in the new system to good
use, Taft says. Reusable launch vehicles, such as the X-33
experimental space plane, and rescue vehicles for the Inter-
national Space Station are all being studied using Steger, and
will be grist for the new system as well. The 512-processor
machine, says Feiereisen, “will allow us to fly a reusable
launch vehicle in the computer before cutting a single piece
of metal.”

Nanotubes
of a new
bent

Just as an emer-
gency flair will
ignite at its cen-
ter when
snapped in half,
a bent carbon

nanotube will acquire higher chemical reactivity at the
“kink” or folding point, according to simulations recently
reported by NAS senior research scientist Deepak
Srivastava. The finding, subsequently confirmed in experi-
ments, may mean that nanotube walls can be induced to
bond with other molecules, leading to a new generation of
devices made from the tiny structures.

Carbon nanotubes have been a tantalizing scientific curios-
ity ever since their discovery in 1991. The tubes, sheets of
carbon atoms rolled into cylinders a few billionths of a
meter wide, are some of the most rigid, regular molecular-
scale structures in nature. Nanotechnologists have therefore
been eyeing them as potential components for miniature
motors, transistors, and other devices.

Just as important as the mechanical and electronic uses of
nanotubes, however, may be their chemical reactivity. The
side walls of nanotubes are usually inert, which has led de-
signers of molecular electronics and nano-composite struc-
tures to focus on the tubes’ end caps. But nanotubes with
reactive spots on their walls could be attached at these
points to other nanotubes, or could even be used as chemi-
cal detectors, sticking to substances in their environment.

Srivastava decided to investigate the question. In a paper
published in the Journal of Physical Chemistry in May,
Srivastava described both classical and quantum simulations
revealing increased local reactivity at sites of twisting or
kinking. The greater the twisting or kinking, the greater the
region’s tendency to bond with gas atoms such as hydrogen.
“Controlling the twisting and kinking by mechanical means
gives us a unique handle to ‘paint’ relatively inert sidewalls
of carbon nanotubes in many designs and patterns that
might be useful,” concludes Srivastava. “For example, an
entirely new range of nanoscale molecular electronics and
sensing applications can be envisioned if we have the ability
to ‘paint’ nanoscale materials in a controlled way.”

DE
EP

AK
 S

RI
VA

ST
AV

A

5gridpoints

Some of the most effective
drugs used today emerged
from the laboratories of evo-

lution, not those of the pharmaceutical
industry. Morphine, penicillin, digitalis,
tamoxifen, and many other compounds
derived from plants or fungi take their
power from their exquisitely specialized
molecular structures, the product of
millions of years of random variation
and natural selection. It’s unlikely that
chemists could have conceived of these
substances, let alone synthesized them,
if they had not been discovered first in
nature.

But while nature’s ways are powerful,
they are also slow. People don’t have
eons to wait while new medicines
evolve. To find new drugs ripe for com-
mercialization, pharmaceutical compa-
nies have had to devise far more proac-
tive drug discovery methods, including
a recent innovation called “rational drug
design.” In this approach, researchers
determine the three-dimensional struc-
tures of known drug molecules, and
then build and test molecules with simi-
lar structures. They usually search for
molecules that fit with the same recep-
tor sites in the body but don’t cause as
many unwanted side effects as the exist-
ing drug. This approach has its own
limits, however, since it’s not always
clear which variations on known mol-
ecules are worth testing.

What if evolutionary processes and ra-
tional drug design could somehow be

Putting evolution to work:
A new ‘genetic algorithm’

designs drug molecules
autonomously

BY WADE ROUSH

PARENTS abcdefg uvwxyz

Crossover
point

abcdefg uvwxyz

Children

PARENTS

Crossover
point

Children

abcyz uvwxdefg

Genetic Algorithms Genetic Programming

Genetic Graphs

GA
IL

 F
EL

CH
LE

Figure 1. Different types of “crossover” or recombination are used in genetic software to
determine which structural information will be passed on to the next generation.

6 WINTER 1999

made to work together? Could a procedure similar to natu-
ral selection be used to find promisng drugs?

Those are two of the questions being asked by Al Globus, a
researcher in the NAS Systems Division’s science and tech-
nology group. In recently completed studies using genetic
algorithms, Globus has begun to answer his questions, by
“evolving” complex simulated molecules from nothing more
than a few simple fragments.

Software measures fitness
The Java-based software Globus developed takes groups of
model molecules, represented by simplified stick figures
called graphs, and measures their “fitness” in terms of their
similarity to a given target molecule. The program randomly
breaks apart the fittest molecules in a population, then re-
joins them in new combinations. These new graphs take the
place of other graphs with lower fitness, and the whole pro-
cess starts over.

In computer simulations run last fall spanning dozens and
sometimes hundreds of generations, Globus’s software

Butane

RIPPING APART MATING

Random
bond

Fragments

Benzene

Random
bond

Original
fragments

Butane bond Butane, cut bond

Benzene bond Benzene, cut bond

Random cut
bonds on each
fragment

Merged selected
cut bonds

Select random cut
bond. Randomly
decide to attach to
random atom.

Attach cut bond
to selected atom

Break
shortest
path

Random
bond in
next path

Fragments

spawned several remarkably advanced organic molecules,
including morphine and diazepam (a sedative and muscle
relaxant). The experiment was not intended to uncover new
drugs, Globus emphasizes, but was instead a “proof of con-
cept” demonstrating that genetic software can evolve com-
plex structures autonomously. The researcher using the soft-
ware provides only a “fitness function,” a formula used to
weed out undesirable graphs in the population. Globus, giv-
ing a lighthearted spin to a complicated process, says “All
you have to do is figure out how to write the fitness func-
tion, and the program will happily evolve molecules for
you.”

Molecules aren’t the only entities that can be designed this
way. Any system whose parts can be represented by graphs,
Globus’s experiments show, can evolve under the influence
of a fitness function. That includes electronic circuits,
nanodevices, and other structures. Globus is currently ap-
plying the technique to the design of digital electronic cir-
cuits, and he reports that the software is already able to gen-
erate simple parity circuits.

Going beyond current
techniques

Though Globus is one of the first to
apply genetic graphs to the design of
pharmaceuticals or electronics, genetic
software techniques aren’t new. What-
ever the object being “evolved,” the
method is roughly the same: Start with
a group of randomly generated indi-
viduals. Recombine them using “cross-
over” rules similar to those that govern
the exchange of DNA between chro-
mosomes during sexual reproduction.
(This process determines which combi-
nations of the parents’ genetic informa-
tion will be passed on to the next gen-
eration.) Finally, use a fitness function
to determine which recombined indi-
viduals will survive into the next gen-
eration.

This evolutionary approach to design is
remarkably versatile. A new self-config-
uring airplane wing being designed by
researchers in the NAS data analysis
group, for example, uses genetic algo-
rithms to test and select the optimal
wing shapes for various kinds of flight
(see story, page 8). Several years ago,
Globus tried to use genetic algorithms
to automatically generate descriptions
of force fields in molecular dynamics
simulations. He eventually gave up on

this idea, but kept thinking about genetic algorithms, won-
dering whether they might work well in a related field: the

Figure 2. An example illustrating the crossover procedure Globus devised for
his drug design studies.

Continued on next page

GA
IL

 F
EL

CH
LE

7gridpoints

molecular design of drugs and nanoscale electronics.

For the technique to work, Globus first had to find a way to
represent individual molecules, the units on which natural
or artificial selection act. In most past genetic algorithm
studies, Globus relates, the objects in a population have
been depicted either as strings of alphanumeric symbols or
as trees representing the mathematical instructions needed
to solve a particular problem (see Figure 1, page 4).

Simulating recombination is easy using such a model. Dur-
ing the crossover phase, randomly selected subtrees are sim-
ply exchanged between individuals, creating new instruc-
tions.

But graphs can symbolize more than just mathematical in-
structions, Globus realized. If the vertices in a tree were rep-
resented as carbon atoms rather than variables or operators,
for example, genetic algorithms could be used to evolve
complex organic molecules. “People had evolved trees, but
other than one company, nobody had ever evolved graphs,”
says Globus. “It seemed like a logical thing to do.”

During crossover, Globus observed, graphs could be split
apart between any pair of vertices and then randomly re-
joined, just as the subbranches of trees are exchanged in
regular genetic programming. But for these graphs to repre-
sent real molecules, a couple of kinks needed to be worked
out first. For one, graphs that simply exchange subbranches
can never form rings, which are important parts of most
organic molecules such as benzene, amino acids, and many
drugs. Graphs with rings must therefore be added to the
population manually. Second, fragmenting a ring in prepa-
ration for crossover is also problematic, since the usual pro-
cedure of breaking a single random bond doesn’t suffice to
cut the molecule apart. “The whole point of using graphs is
that you can have rings,” says Globus. Unfortunately, “It’s
not at all obvious” how to write and implement a program
to break rings apart in a random, unbiased way, he explains.

Survival of the fittest
To make graph evolution work, Globus had to invent an
entirely new crossover operator as well as a new fitness func-
tion. In his approach (see Figure 2, previous page), a random
pair of molecules is chosen from the population, and a fit-
ness function is used to measure their similarity to the target
molecule. (This involves counting the number and varieties
of bonds in each molecule and comparing the results to
those of the target molecule.) The fitter molecule is called
“father,” and the less fit individual is discarded. The same
process is repeated to find a “mother” molecule.

Next, a pair of atoms in the father molecule is chosen at ran-
dom. One of the bonds linking this pair is chosen and cut
apart. If the molecule has a chain or tree structure, one cut
will be sufficient to break the molecule in two; if it includes
a ring, bonds continue to be cut at random until every path
connecting the original pair of atoms has been severed. The
same steps are repeated for the mother.

Then one fragment from each parent is combined, produc-
ing a “son.” If the father or mother fragments are derived
from ring molecules and have more than one broken bond,
these bonds are also joined at random, until all broken
bonds on at least one fragment have been mated, tying up
the fragments’ loose ends. The unused fragments of mother
and father are also joined together and called “daughter.”
Two pairs of individuals are then chosen at random from the
population. In one pair, the less fit individual is replaced by
the son; in the other pair, by the daughter. A single genera-
tion is completed when the whole population has been re-
placed.

Globus knew that if he had designed his procedure correctly,
each generation should be fitter, on average, than the pre-
ceding one. Given enough time, the fittest molecules in the
population should gradually come to resemble or even du-
plicate the target molecule.

Figure 3. Globus’s genetic software “discovered” benzene, second
from top, after a median of 39 generations. Cubane was discov-
ered in 46 generations, purine in 245, morphine in 208, diazepam
in 256, and cholesterol in 1,765.

GA
IL

 F
EL

CH
LE

8 WINTER 1999

Flight of the condor
Buying the necessary time, however, became Globus’s next
big challenge. Just as natural selection shows itself only after
the accumulated effects on individuals have altered a whole
species, genetic algorithms must usually simulate many indi-
viduals over many generations before producing promising
results. Globus found this was especially true for his soft-
ware, which behaved very unpredictably. Sometimes the
software generated molecules similar or identical to the tar-
get molecule after only 40 or 50 generations; other times it
went nowhere even after hundreds of generations.

Globus determined that to generate statistically significant
results, he would need to run the code 20 to 30 times for
each target molecule. The program would stop as soon as

the target molecule appeared in
the population, but up to a
thousand generations might be
required to reach this goal. “For
small molecules, the programs
are over in minutes or hours,”
Globus says. “But the larger
molecules take many hours or
even days.”

If he used only his own SGI
workstation to evolve the
graphs, the project would take

years. That led to an “outside-the-box” insight. Globus real-
ized that an abundant source of computing power was all
around him—the more than 400 workstations owned by the
NAS Systems Division, many of which are idle at night and
on weekends. Globus received permission from NAS offi-
cials and the go-ahead from computer scientists at the Uni-
versity of Wisconsin to install the Wisconsin “cycle-scaveng-
ing” system, called Condor, on a number of workstations.
Rather than running the genetic algorithm 30 times on the
same machine, he could now run it once on 30 separate ma-
chines.

Globus started the experiments using three relatively simple
compounds as the target molecules: benzene (C

6
H

6
), cubane

(C
8
H

8
), and purine (C

5
H

4
N

4
). With a starting population of

200 random graphs, the median number of generations re-
quired to find benzene was 39.5. With a starting population
of 100, the program took a median of 46.5 generations to
find cubane and a median of 245 generations to find purine.

When he gave the software tougher molecules as the targets,
it still succeeded, but just barely. On one run, the program
discovered morphine (C

17
H

19
NO

3
) after 208 generations,

but many other runs never approached this target. Diaz-
epam (C

16
H

13
ClN

2
0) emerged after 256 generations in one

run, and a molecule similar to cholesterol was formed after
1765 generations.

Globus documented his results in a paper in November

1998 and presented it at the Sixth Foresight Conference on
Molecular Nanotechnology in Santa Clara, Calif. Soon after
the presentation, however, he discovered a serious bug in his
program. It was neglecting to tie up the loose ends during
crossover—that is, it was skipping the step in which mother
and father fragments with multiple broken bonds are joined
at several different points. “If you don’t do this second part,
it’s very difficult for ring structures to evolve,” Globus ex-
plains.

Once he fixed the problem, the program’s success rate rose
dramatically. In newer simulations, nearly all of Globus’s
runs have found their target molecules. “As [evidence] that
my program can find a drug molecule, that’s an ideal result,”
he says. He hopes that pharmaceutical companies will pick
up on his study and adapt the technique to design novel
molecules that are stronger and safer than current drugs.
“The real point will not be to find the exact target molecule,
but to find molecules that are pretty similar,” he says.

Applying evolutionary techniques
to circuit design
Meanwhile, Globus has moved on to the evolutionary de-
sign of advanced electronic circuits, which can also be repre-
sented using graphs. “As far as the program is concerned, a
circuit is just a bunch of nodes [such as resistors, capacitors,
and transistors] with wires between them,” he says. The big
difference is that wires in circuits, unlike molecular bonds,
have directionality: electrical current can only flow from a
negative anode to a positive cathode. This means that dur-
ing crossover, the program must mate the negative ends of
some cut wires with the positive ends of others.

It’s “tricky” to arrange this, Globus admits. So far, he has
coaxed his software to evolve simple circuits such as parity
and delay circuits. It has yet to evolve a serial add circuit,
one of the most fundamental circuits in electronic engineer-
ing. The eventual reward of such studies, however, could be
the blueprints for new kinds of computers. Future nanoscale
computing devices, for example, may require circuits with
highly novel geometries. It may be easier to evolve and test
millions of such structures in simulations than to design
even one circuit from first principles.

With the NAS Condor pool now 149 workstations strong,
Globus should have plenty of computing power to continue
his circuit design studies. NAS senior scientist T.R.
Govindan is optimistic that Globus’s program will come
across useful designs. “Genetic algorithms have the potential
to discover molecular and electronic circuit configurations
that are unconventional, yet effective,” Govindan says.
“Studies like Al’s are helping advance molecular pharmacol-
ogy toward finding new, more effective drugs, and I antici-
pate that there would be a similar impact on electronic cir-
cuit design and layout.”

‘All you have to do
is figure out how to

write the fitness
function, and the

program will
happily evolve

molecules for you.’

9gridpoints

Designing a
‘smart wing’ for the

Mars airplane
BY DAVID KENWRIGHT

One of the most familiar and awe-
inspiring scenes at the oceanside is
that of a seagull soaring, plummet-

ing, and rising again over the waves. The gull
switches between these flight modes by pivot-
ing, curling, twisting, or flattening its wings,
techniques that Orville and Wilbur Wright
are known to have observed before they con-
structed their 1903 Flyer. The brothers
equipped the Flyer with an ingenious system
of cables that allowed the pilot to twist the
wings in opposite directions, banking the
craft for turns and maintaining lateral bal-
ance. The discovery of this “wing warping”
principle was one of the most important rea-
sons the Wrights achieved controlled flight of
a manned, powered aircraft ahead of their
competitors.

It seems appropriate, then, that a similar
mechanism may be used for a robotic aircraft
destined to fly over the dunes and canyons of
Mars in the centennial year of the Wright
brothers’ first flight over the sands of Kitty
Hawk. Last February, NASA Administrator
Dan Goldin announced that the space
agency will fly an airplane on Mars in 2003,
taking aerial photographs of the spectacular
Valles Marineris, a huge valley system that
outstrips Earth’s Grand Canyon by a factor of
ten. A team of three researchers in the NAS
Systems Division is creating a flexible, shape-
shifting “biomimetic” wing for possible use
on the Mars plane.

The wing, which the team will build and test
next year, will mimic living systems in three
ways. First, it will continually sense condi-
tions in its environment, process this input
electronically, and adjust its own outer shape
to achieve an appropriate flight profile. Sec-
ond, these adjustments will be made by “syn-
thetic muscles” made of active materials, tiny
servo mechanisms, and other actuators hid-
den inside the wing. Third, the wing will be Figure 1. Inside this model “smart” wing is a simple reshaping

mechanism using micro-servo actuators. The servos apply forces to the flexible skin
and can reshape the airfoil in 1/10th of a second. The prototype wing may contain
hundreds of micro servos or thousands of synthetic muscles.

RESEARCH REPORT

M
IC

HA
EL

 B
OS

W
EL

L

10 WINTER 1999

equipped to “evolve” optimal wing configurations on its
own. During wind tunnel tests, genetic algorithms will be
used to generate and test thousands of alternate wing shapes,
helping the wing to zero in on the fittest shapes for each
mode of flight.

The project is designed to demonstrate the feasibility and
advantages of “smart” components for autonomous aircraft
such as the Mars plane. The work may also yield new in-
sights into the uses of biological models in aerospace design
and other areas of engineering.

Mars aviation: the challenges
A key goal of Mars exploration is to search for the best places
to collect samples for return to Earth—places where geology
indicates the possible past existence of water or layered sedi-
ments. Another goal is to provide high-resolution images of
rock structures that are very high or span thousands of miles.
Orbital probes such as the Mars Surveyor are already gather-
ing these kinds of data, which help researchers decide where
to land vehicles such as NASA’s planned 2001 Mars probe
(see article, page 2). However, an airplane flying a few thou-
sand feet above the Martian surface will be able to capture
significantly more detail than even the lowest-flying orbiter.

The Mars Airplane project, led by mission planners at
NASA Langley Research Center in Virginia, is in the early
stages of development. Engineers already know, however,
that designing an aircraft intended to fly in the atmosphere
of another planet will present many unique challenges. The
gas composition, air density, and gravitational fields, for ex-
ample, are significantly different from those found here on
Earth. On Mars, carbon dioxide is the atmosphere’s most
abundant gas. The air density at the surface is equivalent to
that found at 100,000 ft. above the Earth, and gravity is
about one third that at sea-level on Earth. Wind tunnel or
flight tests on Earth cannot exactly recreate all these condi-
tions, making it difficult to design an optimal wing shape.

The proposed smart wing will reconfigure and optimize its
shape during flight to suit the atmospheric conditions or the

mission it must perform. Why change the shape of a wing in
flight? To gather the data researchers need, unmanned aerial
vehicles (UAVs) may have to gain altitude using “ridge lift”
from mountains or rising thermal currents, traverse long dis-
tances with minimal loss in altitude or energy, loiter for ex-
tended periods for landing site analysis, or provide a stable
platform to photograph geological structures. Each of these
modes requires a different airfoil shape or wing cross section
for optimal performance.

Bridging biology and engineering
One way pilots control the lift generated by an aircraft’s
wings is to extend or retract the flaps on the leading edge,

changing the wing’s surface area. Unfortunately, this
method depends on complex hydraulic and control sys-
tems with many moving parts, a liability for an aircraft

flying millions of miles from the nearest maintenance han-
gar. Birds’ wings offer a far more promising model for an
adaptable, self-configured aircraft wing. In fact, scientists
and engineers in the emerging field of “biomimetics” are
looking to nature as the inspiration for many new structures,
materials, and machines. By bridging the fields of biology
and engineering, biomimetics researchers can develop smart
structures that interact with their environments and change
their design to achieve superior performance.

In June, NAS researchers David Kenwright, Chris Henze,
and Shishir Pandya received an award through the Ames Re-
search Center Director’s Discretionary Fund to design, build,
test, and fly a biomimetic wing. The group’s early plans and
models include several elements new to aerospace design,
such as a large array of actuators that will be embedded in
the wing and driven by one or more microcontrollers con-
nected to a computer. The actuators will consist of both elec-
tromechanical devices (micro servos) and active materials
(synthetic muscles).

A variety of synthetic muscle actuators have been developed
in the past decade, including shape memory alloys,
piezoelectrics, and electroactive polymers. The synthetic
muscles contract or bend when energized by an electric cur-
rent and can be manufactured in wires as thin as a human
hair. Synthetic muscles are smaller and more reliable than
micro servos because they have no moving parts other than
the material itself. They are thousands of times smaller than
the smallest available micro servo and may be attached or
built into the exterior skin. They have the potential for more
precise and complex motions than are possible with micro
servos. At present, however, micro servos can be positioned
more precisely than synthetic muscles and can be more easily
controlled with small and lightweight on-board
microcontrollers. Computational studies will be required to
determine how to best arrange synthetic muscle fibers in a
wing.

The main function of the micro servos will be to apply forces
to the outer skin of the wing near its high point (see Figure 1,

Artist’s concept of a jet-powered Mars Airplane, from a design developed
at NASA Langley Research Center

NA
SA

 L
AN

GL
EY

 R
ES

EA
RC

H
CE

NT
ER

Continued on next page

11gridpoints

thousands of times smaller than the smallest available micro
servo and may be attached or built into the exterior skin.
They have the potential for more precise and complex mo-

tions than are possible with mi-
cro servos. At present, however,
micro servos can be positioned
more precisely than synthetic
muscles and can be more easily
controlled with small and light-
weight onbard microcontrollers.
Computational studies will be
required to determine how to
best arrange synthetic muscle
fibers in a wing.

The main function of the micro
servos will be to apply forces to
the outer skin of the wing near
its high point (see Figure 1, page
8). Differential movements of
the servo arms change the cam-
ber or curvature of the wing,

while coordinated movements increase or decrease the thick-
ness. In the finished biomimetic wing, this mechanism
would be repeated at tens or hundreds of locations across
the wing. Unlike a conventional wing, the airfoil shape at
each location could be significantly different from its
neighbor’s shape. In optimal configurations, how-
ever, the change in shape along the wing is likely to
be gradual.

The materials used to construct the biomimetic
wing also possess some interesting properties not
encountered in present-day aircraft. The exterior
skin will flex in response to movements by the in-
ternal actuators. Because the external skin must
reshape in flight, a rigid internal structure is re-
quired to support the bulk aerodynamic forces and
bending moments. Internal load bearing spars
(analogous to bones in birds) are required to sup-
port the skin and provide stable mounts for the
array of actuators. The spars will be fabricated
from carbon fiber composites based on a construc-
tion technique used in high-performance aerobat-
ics aircraft and gliders. The biomimetic wing has
no external hinges, seams, or flaps like a conven-
tional wing, so it is aerodynamically “clean” and
suited to missions in dusty environments, such as
the Mars atmosphere.

Winds of change
In addition to shape shifting, the biomimetic wing will ex-
ploit one more aspect of living organisms: evolutionary de-
sign. In wind tunnel tests, an optimal wing configuration
will be “evolved” to suit a particular task or conditions using
genetic software techniques. For example, a wing shape may
be evolved to maximize the lift-to-drag ratio for the purpose

of traversing long distances with minimal loss of altitude or
airspeed. The biomimetic wing will reshape itself in just a
tenth of a second, allowing thousands of wing configura-
tions to be tested every hour in the wind tunnel.

Speed and selectivity are essential, since a wing containing,
say, 100 servos, each capable of assuming1024 different po-
sitions, would have a vast number of possible configura-
tions. A filtering process is needed to efficiently produce
wing configurations that are particularly adapted to certain
environmental conditions. Genetic algorithms have proved
to excel in such roles (see story, page 4).

Figure 2 (next page) illustrates in more detail how the
biomimetic wing will evolve in the wind tunnel. First, a
wing configuration is selected by the genetic algorithm. To
improve the chances of finding an optimal solution, the ini-
tial configurations will be set using results from numerical
simulations. The configuration is then relayed through a
serial interface to a micro controller embedded in the wing
which uses modulated pulses to reposition the servos. Aero-
dynamic load measurements are then recorded by the force/
moment balance and sent back to the PC where they are
rated against a fitness function.

By measuring the fitness of different wing configurations,
and storing the configurations and resultant fitness in

memory, it is possible to successively build up a population
of wings with some distribution of fitness. Especially fit in-
dividuals can then be combined, or hybridized, to generate
variable offspring for further testing. The fitness functions
employed will vary depending on the type of environment
to which the wing must adapt. For pre-flight testing and

By bridging the
fields of biology and

engineering,
biomimetics

researchers can
develop smart
structures that

interact with their
environments and

change their design
to achieve superior

performance.

Researchers at NASA Ames Research Center developed this proposed design for
a propeller-powered Mars Airplane.

Continued from previous page

NA
SA

 A
M

ES
 R

ES
EA

RC
H

CE
NT

ER

12 WINTER 1999

plane with seagull-like wings may soon soar over the plains
of Mars.

David Kenwright is a member of the NAS data analysis group and a senior
research scientist for MRJ Technology Solutions.

development, multiple
strategies will be ex-
plored. The idea is to
evolve as varied a reper-
toire of flight character-
istics as possible, so that
the aircraft can adapt
quickly and efficiently to
both expected and un-
foreseen environmental
challenges.

In actual flight tests, the
force/moment balance
will be replaced by on-
board sensors that mea-
sure position, velocity,
and acceleration. The
wing will become a fly-
ing laboratory, recording
and evaluating its own
performance. The smart
wing will offer not only
greater autonomy and
reliability, but could po-
tentially teach researchers
Martian aerodynamics
without having to build a
wind tunnel on Mars.

Building on earlier results
The biomimetic wing project builds on past research at
NASA and the Department of Defense. The Defense Ad-
vanced Research Projects Agency (DARPA) has funded re-
search into adaptive and flexible wing technology for high-
performance military aircraft. The aerodynamic benefits
demonstrated by these studies included increased lift-to-drag
ratio, improved maneuverability, and delayed flow separa-
tion. NASA’s Jet Propulsion Laboratory in Pasadena, Calif.,
has developed lightweight synthetic muscles using
electroactive polymers that will be Mars-tested as wiper
blades for scientific instruments on future rovers. Last year,
NASA began a six-year “Aircraft Morphing Program” in-
tended to integrate smart technologies into high-payoff air-
craft applications.

Before progressing to wind tunnel and flight tests, scheduled
to begin in October 2000, the biomimetic wing’s perfor-
mance will be simulated using new computational fluid dy-
namics software developed by Ravi Samtaney at Caltech.
The software detects large eddies formed around a deform-
ing three-dimensional wing. Data resulting from these stud-
ies will be explored using the Virtual Wind Tunnel devel-
oped at NAS (see story, page 24). The genetic algorithms and
actuator control software are also being developed in-house
by the NAS data analysis group. With help from many ex-
perts such as these inside and outside of NASA, a Mars

For a free subscription to Gridpoints, please return the
enclosed postage-paid subscription card.

Figure 2. A machine learning program, such as a genetic algorithm, will provide the “brains” to
reshape the biomimetic wing. The genetic algorithm selects the fittest designs based on aerody-
namic force and moment measurements from either a wind tunnel balance or on-board sensors.
The algorithm instructs a microcontroller (embedded in the wing) to reposition the actuators and
reshape the wing. This experimental set-up will make it possible to test thousands of wing
configurations during a one hour wind-tunnel test.

DA
VI

D
KE

NW
RI

GH
T

13gridpoints

Radical computer
architecture

speeds & simplifies
dynamic simulations

BY RUPAK BISWAS

T he ability of com
puters to solve hith
erto intractable

problems and simulate
complex processes using
mathematical models
makes them an indispens-
able part of modern science
and engineering. Aero-
space simulations have
been a particularly impor-
tant application, since they
are several times cheaper
than wind tunnel experi-
ments and field trials, and can be completed much faster.
However, because they lack absolute accuracy, simulations
have yet to completely replace expensive and time-consum-
ing physical tests.

Aerospace simulations require solving a set of non-linear
partial differential equations over a finite region around a
simulated object, such as an airfoil. Structured grids that
divide the region into many small quadrilaterals are the
most natural way to break up or “discretize” a computa-
tional domain. Structured grids are characterized by a uni-
form connectivity pattern, that is, all internal grid points
have a fixed number of neighbors. However, complex do-
mains must often be divided into multiple structured grids
to be completely discretized, requiring a great deal of human
intervention. Unstructured meshes, by contrast, can be gen-

erated automatically for applications with complex geom-
etries or dynamically moving boundaries (but at the cost of
higher storage requirements to explicitly store the connectiv-
ity information for every point in the mesh).

Using a standard fixed mesh, it may be time-consuming or
even impossible for a simulation to resolve fine-scale fea-
tures. Efficiency can be significantly improved by inserting
new grid points in regions that require more resolution, and
removing points from regions where less resolution is ac-
ceptable. Unstructured grids, by their very nature, facilitate
this kind of local, dynamic mesh adaptation. This adapt-
ability allows unstructured meshes to be used to efficiently
solve problems with evolving physical structures, such as
shock waves, contact discontinuities, vortices, and shear lay-
ers.

RESEARCH REPORT

RU
PA

K
BI

SW
AS

 &
 L

EO
NI

D
OL

IK
ER

Figure 1

14 WINTER 1999

On uniprocessor machines,
numerical solutions of such
complex, real-life problems
can easily require several
hours to days, a fact driving
the development of increas-
ingly powerful parallel (multi-
processor) supercomputers.
The unstructured, dynamic
nature of many systems worth
simulating, however, makes
their efficient parallel imple-

mentation a daunting task. This is primarily due to the load
imbalance created by the dynamically changing nonuniform
grids and the irregular data access patterns. These cause sig-
nificant communication at runtime, leaving many proces-
sors idle and adversely affecting the total execution time.

Nonetheless, many researchers believe that adaptive unstruc-
tured-grid techniques will play an important role in future
high-performance supercomputing. To minimize the “over-
head” associated with a numerical simulation, mesh adapta-
tion and dynamic load balancing must therefore be accom-
plished rapidly and efficiently.

Recently, three competing parallel architectures have
emerged, each with its own set of programming paradigms.
The author and his colleague Leonid Oliker, a computer
scientist at Lawrence Berkeley National Laboratory, set out
to compare the performance of these architectures—distrib-
uted memory systems, distributed shared-memory systems,
and multithreading systems—on a standard unstructured
mesh adaptation problem. Surprisingly, multithreading, the
least well-known of the three architectures, offered the best
combination of speed, efficiency, and ease of use.

Parallel
computing at a
glance

distributed memory:
each processor “owns”
its local memory, and
data is shared between
processors via message-
passing protocols

shared memory: all
processors have access to
all memory locations.
Easy to program, but
processors must be
prevented from modify-
ing the same memory
location simultaneously

multithreading : while a
blocked thread (a short
sequence of instruc-
tions) waits for data
from memory, a
processor can switch to
a ready thread, maximiz-
ing efficiency

Contrasting Approaches
On distributed-memory systems, each
processor has exclusive access to its own
local memory. To access data in another
processor’s memory, a copy of the desired
data must be explicitly sent across the net-
work using a message-passing protocol
such as Message Passing Interface (MPI)
or Parallel Virtual Machine (PVM). To
run an application on such machines, the
programmer must decide how the data
should be distributed among the local
memories, communicated between proces-
sors during the course of the computation,
and reshuffled when necessary. This al-
lows the user to design efficient programs,
but at the cost of increased code complex-
ity and programming work.

In distributed shared-memory architec-
tures, each processor has a local memory but also has direct
access to all the memory in the system. On the SGI Ori-
gin2000 computer, for example, each processor uses a local
cache to fetch and store data.
Cache coherence is managed by
hardware, but since the shared
memory is physically distrib-
uted, the memory access times
are nonuniform. Such comput-
ers are therefore classified as
cache-coherent nonuniform
memory access (CC-NUMA)
machines. Parallel programs are
relatively simpler to implement
on such systems since each pro-
cessor has a global view of the
entire memory. Parallelism can
be achieved easily by inserting
directives into the code to dis-
tribute steps in a program
among the processors. How-
ever, the portability of code be-
tween machines may be dimin-
ished, and sophisticated cache
management techniques may be
necessary to enhance parallel
performance.

Multithreading is a radically
new concept in parallel comput-
ing. The hardware of traditional
monothreaded computers can
process only a single thread (a
short sequence of instructions)

To compute air speed, direction,
pressure, and other parameters
around a simulated airfoil, the
space is first divided into
thousands of triangles forming an
“unstructured mesh.” Figure 1,
left: The mesh after the density
of triangles has been increased in
specific regions to better
simulate fine-scale phenomena
such as turbulence. Figure 2,
above: The mesh before refine-
ment.

Continued on next page

Figure 2

RU
PA

K
BI

SW
AS

 &
 L

EO
NI

D
OL

IK
ER

15gridpoints

Surprisingly, multithreading,
the least well-known of the
three architectures, offered

the best combination of
speed, efficiency, and

ease of use.

at a time. As a result, such computers remain idle
while waiting for information to arrive from memory.
Multithreaded processors, on the other hand, can toler-
ate memory latency and utilize substantially more of
their computing power by processing several threads of
computation at once. For example, each processor in
the Tera MTA supercomputer, manufactured by Tera
Computer Company, has hardware to support up to
128 threads.

This multithreaded architecture is especially well-suited for
irregular and dynamic applications such as unstructured-
mesh simulations. Unlike CC-NUMA machines,
multithreaded computers have large uniform shared
memory and no data cache, and are completely insensitive
to data placement. Parallel programmability is therefore
simplified since the user has a global view of the memory
and need not be concerned with the data layout.

Programming
pluses and
minuses
Using distributed-
memory machines
and/or the message-
passing paradigm de-
mand the greatest pro-
gramming effort for

almost all but the most easily parallelizable applications.
Data has to be explicitly spread across processors, and special
data structures have to be created and consistently main-
tained for objects lying on partition boundaries. For a com-
putational fluid dynamics application, this implies a high
bookkeeping overhead for all the shared vertices and edges
of the mesh. In addition, simulations using adaptive meth-
ods can be slowed by load imbalances among processors be-
cause of the changing nature of the grids. In our current
study, we used the PLUM global load balancer (Parallel
Load Balancing for Adaptive Unstructured Meshes, also de-
veloped by Oliker and Biswas) to balance the workload,
minimize the runtime interprocessor communication, redis-
tribute the mesh after each adaptation, and maintain consis-
tent information about the mesh across all the processors.
Thus, unstructured mesh adaptation in a message-passing
environment incurs several additional costs.

The shared-memory programming paradigm is generally
much simpler than message-passing because all memory in
the system is equally accessible to the software, even if the
access time is nonuniform. Unfortunately, the user must
ensure that multiple processors do not simultaneously
modify the same memory location. The simplest prevention
strategy is to use low-level locks that allow only one proces-
sor to modify critical values at a time. However, for the dy-
namic unstructured application used by the author and his
collaborator to test the three architectures, it was more effi-

cient to decompose the
triangles of the computa-
tional mesh into indepen-
dent sets such that members
did not share edges or verti-
ces. All processors then
work together on all the tri-
angles in the same set.

Dynamic load balancing on
shared-memory machines,
meanwhile, is easily achieved
through compiler directives.
Two overheads are associated

with this second strategy: the need to insert newly-generated
triangles due to refinement into sets, and a global synchroni-
zation between the processing of individual sets. But be-
cause the memory is globally accessible, no explicit data re-
distribution is required.

All three architectures experience latency, a wait while data is
transferred to and from memory. But while shared-memory
architectures use data caches to hide latency, a multithreaded
processor switches to a ready thread as a blocked thread
waits for its memory reference to complete. The larger the
number of concurrent computational threads, the greater
the performance. A flat, uniform shared-memory without
cache thus removes many of the performance drawbacks
associated with CC-NUMA machines for irregular applica-
tions.

On the Tera MTA, all memory addresses are randomized by
the hardware so that it is impossible to control data place-
ment. Also, an MTA processor switches with zero overhead
among active threads at every clock period even if a thread is
not blocked. Synchronization among threads is provided by
the memory itself without operating system intervention.
Synchronization may stall one of the threads, but not the
processor on which the threads are running. Once a code
has been written in the multithreaded model, no additional
work is required to run it on multiple processors, since there
is no difference between uni- and multiprocessor parallel-
ism. Low-level locks are retained in the multithreaded
implementation of the mesh adaptation code to ensure that
adjacent triangles are not updated simultaneously. But no
partitioning, data redistribution, independent sets, or ex-
plicit load balancing are required, greatly simplifying the
programming effort.

Architectures Under the Lens
A standard computational mesh simulating flow over an
airfoil was used for benchmarking experiments comparing
the three parallel architectures. The coarse initial mesh con-
sists of 14,605 vertices and 28,404 triangles (see Figure 2,
page 13). Mesh refinement is usually required around the
leading edge of the airfoil. At transonic Mach numbers,
shock waves form on both the upper and lower surfaces of

The Tera MTA supercomputer,
made by Tera Computer Company

Continued from previous page

TERA COM
PUTER COM

PANY

16 WINTER 1999

the airfoil which then propagate to the far field. This sce-
nario was approximated by manually specifying the level of
adaptation in these regions. This allowed the performance
of the unstructured mesh adaptation and load balancing
algorithms to be measured without first running the full
simulation to find areas of interest.

In the test runs, the initial mesh was refined a total of five
times to generate a mesh consisting of 488,574 vertices and
1,291,834 triangles (see Figure 1, page 12). Table I, below,
summarizes the performance of the parallel, dynamically
adapting, unstructured mesh application on various plat-
forms using different programming paradigms.

It is important to reiterate that the irregular, adaptive nature
of such algorithms makes it particularly difficult to achieve
good performance. For reference purposes, the timing for
the original serial mesh adaptation code is reported. It con-
sists of approximately 1,300 lines of C, and requiree 6.4 sec-
onds to execute the benchmark simulation on a 250 MHz
MIPS R10000 processor.

The message-passing version demanded the greatest pro-
gramming effort, almost doubling the size of the original
serial code. Significant additional memory was also needed,
mainly for the send and receive buffers for the bulk commu-
nication during the redistribution phase. Despite these
drawbacks, the message-passing code showed reasonable
scalability and can be easily ported to any multiprocessor
system supporting MPI. The best time on the 640-node
CRAY T3E owned by the National Energy Research
Supercomputing Center at Lawrence Berkeley National
Laboratory was 3.0 seconds when running the simulation
on 160 processors. The adaptation application required
only 0.61 seconds, but the partitioning and data redistribu-
tion times were 1.7 seconds and 0.69 seconds, respectively.
With more processors, the refinement and redistribution
times continued to decrease, but this was more than offset
by the increase in the partitioning time.

The best time on an SGI Origin2000 at the NAS Systems
Division of NASA Ames Research Center was 5.4 seconds
when running the benchmark on 64 processors. Again, par-
titioning required 2.3 seconds, and the runtime trend indi-
cated that using more processors would neutralize the de-

crease in the
refinement and
redistribution
times. The
shared-memory
directive-based
version required
far less pro-
gramming ef-
fort than the
MPI imple-
mentation and

had a low memory overhead. This
code can be ported to any system sup-
porting a global address space. Unfor-
tunately, the fine-grained nature of
these computations resulted in poor
cache reuse and significant overhead
due to false sharing. The best time of
39.6 seconds was obtained with 8 pro-
cessors. Mesh refinement required
17.0 seconds, while the remaining
time was spent in decomposing the
triangles of the mesh into independent
sets to prevent two or more processors
from writing into the same memory
location. This forced adjacent tri-
angles to be in different sets, dramati-
cally increasing the cache miss rate.

The Tera MTA at the San Diego
Supercomputing Center handled the

Continued on Page 26

Table I: Performance by Paradigm. Each architecture was tested using an adaptive mesh
refinement algorithm designed to increase the density of triangles in specified regions of a two-
dimensional unstructured mesh. Note that the timings for the various parallel versions, which
are the best times for any number of processors tested, include the overhead of dynamic load
balancing (this is absent in the serial version). It is also important to note that different parallel
versions use different dynamic load balancing strategies. Details are given in the text of this
article and in a technical paper to be presented at the SC99 conference in November. The best
wall-clock time of 39.6 seconds for the directive-based version on the Origin2000 (O2K) was
unexpectedly slow. Several reasons contribute to this poor parallel performance. Since triangles
are processed a set at a time (triangles in a set do not share edges or vertices), the cache miss
rate increased dramatically from the serial case where all triangles are processed in the natural
order, in which subsequent triangles are usually close together in memory. Another
consequence of the poor data locality is the significant overhead that is incurred when an
accessed memory location is not on the list of most recently used pages. This is known as a
“TLB miss” and causes the operating system to call a relatively expensive routine that finds the
physical address in a memory table. Poor parallel performance also stems from the structure of
the code which, for programming simplicity, assumes a flat shared-memory model and does
not consider data locality or cache effects. When triangles of a particular set are being
processed, each processor refines distinct triangles that have non-overlapping edges and
vertices. However, since data structures are not explicitly reordered, cache lines contain mesh
objects that may be required by several processors simultaneously. This “false sharing” problem
is exacerbated when new mesh objects are created during refinement. Each time a new word is
written to cache, all copies of that cache line residing on other nodes are invalidated. The
hardware is therefore overloaded attempting to maintain cache coherency in this environment.
The author, who can be contacted at rbiswas@nas.nasa.gov, welcomes suggestions on
improving the code’s performance in the CC-NUMA environment and is happy to share the
code with colleagues.

GA
IL

 F
EL

CH
LE

Genetic Graphs
Programming

Paradigm
Programming

Paradigm
SystemSystem Best

Time
Best
Time

(# of Processors)

Code
Increase

Code
Increase

Memory
Increase
Memory
Increase

ScalabilityScalability PortabilityPortability

Serial
MPI
MPI
Compiler Directives
Multithreading Directives

R10000
Cray T3E
SGI O2K
SGI O2K
Tera MTA

 6.4 (P=1)
 3.0 (P=160)
 5.4 (P=64)
 39.6 (P=8)
 0.35 (P=8)

100%
100%
 10%
 2%

70%
70%
 5%
 7%

Medium
Medium
None
High

High
High
Medium
Low

17gridpoints

No medals went to a team of MIT computer scien
tists taking part in the Ninth World Computer-
Chess Competition in June, but their fourth-place

finish did come with a reward. The group was able to test-
drive its computer chess program on Steger, the 256-proces-
sor SGI Origin2000 supercomputer at the NAS Systems
Division. At the time of the competition, the Steger system
was the world’s largest shared-memory, single-system-image,
parallel supercomputer, lending the team not only consider-
ab le computing power but also an opportunity

to study the performance of their
computer-chess program,

Cilkchess, in a massively
parallel environment.

Running their com-
puter chess ap-
plication on the
256-processor
machine was an
important learn-

ing experience,
team members say.

“You learn what the real prob-
lems are,” says project lead

Charles Leiserson of
MIT’s Laboratory for

Computer Science
(LCS).

Despite a few
minor glitches
during the
competition,
the MIT team

racked up
more points
than 26

other com-
petitors, falling

short of first
place by

only half
a point.

Ac-

cording to Leiserson, the team gained “invaluable” experi-
ence with memory handling, latency hiding, and other tech-
nical factors affecting the speed of parallel computations.
“The hands-on experience allowed us to identify issues with
the memory allocation manager in the SGI system, leading
us down new avenues of research,” Leiserson says.
Engineers and system administrators at the NAS Facility
also found the competition enlightening. “Cilkchess really
stressed the 256-processor system,” helping to expose previ-
ously unrecognized problems, says Jens Petersohn, a NAS
systems engineer who worked with the MIT team.

Cilk makes the grade
Chess is more than a game to Leiserson
and his colleagues at MIT. To them, it’s
also an instrument for demonstrating the
performance power of Cilk, the computer
language used to compose Cilkchess.

Members of the Supercomputing Technologies group at
LCS created Cilk, an extension of the common program-
ming language C, to address challenges in the parallel pro-
gramming of dynamic, irregular applications. As Leiserson
explains, it is often difficult to predetermine how much
work will fall to each processor in parallel computations
(such as those required in a chess game). As a result, some
processors in a traditional parallel programming environ-
ment become overworked, creating bottlenecks that slow
down the entire program. Cilk is specially equipped to
handle unpredictable computational structures that don’t fit
the regular patterns found in traditional parallel programs.
To make efficient use of multiple processors, applications
written in the Cilk language call on two techniques:
multithreading and work stealing. Multithreaded programs
divide themselves into multiple “threads,” or short sequences
of instructions, to solve a single problem (see article, page
12). Available processors “steal” these threads automatically,
without explicit instruction by the programmer. The result
is a more balanced spreading of computations to unused
processors.

Cilk is being used by researchers across the United States for
applications such as graphics rendering, artificial evolution
studies, and simulations of protein folding and galaxy for-
mation. Professor Bonnie Berger of LCS and the MIT

Chess competition puts
256-processor Origin2000
to the test
BY HOLLY AMUNDSON

18 WINTER 1999

supercomputers at NAS; it contains 64 gigabytes of memory
and 1.33 terabytes of disk space, and can reach speeds in
excess of 20 GFLOPS (billions of floating point operations
per second) on real applications (four to five times faster
than von Neumann, the 16-CPU CRAY C90 at NAS).
Currently, over 700 regular users share time slots on Steger,
including the Boeing Company and a team of engineers at
NASA Langley Research Center who are designing a new
reusable launch vehicle.

For applications such as Cilkchess that create unpredictable,
rapidly varying workloads, Petersohn points out, the 256-
processor system has a significant edge over serial computers
or computers with only a few processors. According to
Leiserson, Cilkchess was so well adapted for a massively par-
allel system that the program required no major changes to
run on Steger, merely small, “standard adjustments” to ini-
tialization scripts.

Cilkchess vs. the world
Skillful programming can take a computer
chess team only so far, Leiserson notes.
Success also depends on the “deep search
capacity” of the program. During a game
of chess, each move generates a new set of
possible countermoves and counter-coun-

termoves, a phenomenon termed a “game tree.” With addi-
tional moves, the number of possibilities increases at an ex-
ponential rate. The depth to which the program can look
down different branches of the game tree during play de-
fines the deep search capacity of that particular machine.
The deeper the search capacity, the stronger the program.

After their second-place showing in 1998 at the city of
Leiden in the Netherlands, the MIT team was eager to travel
to Germany to participate in the 1999 world championship.
Even before leaving, however, the group faced a few chal-
lenges. During practice runs on Steger, the Cilkchess team
encountered issues related to the Origin2000’s operating
system. Steger allocates memory in such a way that certain
processors can become overloaded with initialization tasks.
The uneven data initialization slowed the team’s initial
progress, but NAS engineers helped the MIT group work
out the problem.

The competition itself was computer-versus-computer, but
the event retained the flavor of a traditional chess tourna-
ment. Participants tracked their programs’ moves with
physical boards and regulation chess clocks. A majority of
the participants ran their programs on microprocessors, en-
abling them to bring their own hardware and software to
Germany. Several teams, including Cilkchess, used plain
terminals linked to their remote computing resources.
Chess fans were able to follow the event in real time on web
sites created by LCS and the organizers of the world chess

mathematics department, for example, has used the Cilk
programming language to build a simulator for biological
virus shells.

Don Dailey, a system administrator for the Supercomputing
Technologies Division at LCS, was asked to join the
Cilkchess team at MIT after winning the 1993 International
Computer Chess Championships in Indianapolis with his
program Star Socrates, an early version of Cilkchess. “I have
loved chess ever since I was a little kid,” Dailey says. “The
development of Cilkchess started as a hobby.” Very quickly,
however, Cilkchess became a vehicle for showcasing Cilk-5,
the most recent version of the language. “The Cilk language
makes it very easy to write a parallel program like Cilkchess,”
adds Dailey.

Work-stealing algorithms, says Dailey, turn out to be a good
way to accommodate the varying workload generated during
a chess game, where moves are unpredictable and cannot be
assigned in advanced to certain processors. Early in a game,
it is often unclear which team has the better position. Some-
times, the positions are unbalanced, with the two sides
showing very different strengths and weaknesses, and with
frequent confrontations between high- and low-ranking
pieces. These differences often lead to interesting play, but
in such cases predicting the outcome of the game is nearly
impossible. “Cilkchess excels when the position is unbal-
anced,” Dailey boasts.

Bigger is better
In 1996 the Cilkchess team placed first in
the Dutch Open Computer Chess Cham-
pionship, running the program on a 12-
processor Sun UltraSPARC Enterprise
5000 server. The team finished second in
the same competition in 1997 and 1998,

using a 4-processor DEC Alpha Server 4100 in 1997 and a
64-processor SGI Origin2000 at Boston University’s Center
for Computational Science in 1998.

For the 1999 World Chess Competition in Germany,
Leiserson invited a number of possible sponsors to work
with the MIT computer team. The organization offering
the largest machine, Leiserson proposed, would be the
group’s choice for the competition. SGI and the NAS Sys-
tems Division won the bidding with the offer of Steger,
NASA’s largest multiprocessor, shared-memory computer.
SGI, which claimed 5 percent of the computing time on
Steger as part of its 1998 agreement with the Division to
build the machine, donated all of its time to the MIT group.

Assembled at the NAS Facility in November 1998, Steger is
twice the size of its largest predecessors, the two 128-proces-
sor Origin2000 computers at the division. NASA and SGI
joined forces on the project in order to explore the behavior
of very large parallel systems. In memory size and speed, the
Steger system ranks high above the CRAY C90 and J90 Continued on next page

19gridpoints

Cilkchess creator Don Dailey (left) and opponent at the 1999
World Computer Chess Competition in Paderborn, Germany

championship.

Playing against a program called Junior in the third round of
the competition, Cilkchess ran into some bad luck. The
team’s rook became trapped as a result of the dreaded “hori-
zon effect,” the inability of a chess program or its computer
platform to search far enough into the future to predict the
moves of its opponent. “A machine does not have the com-
mon sense that a human has. A person could easily see
something like this [the rook’s predicament],” explains
Leiserson. Despite any minor glitches in Steger’s execution,
however, Leiserson maintains a positive regard for the SGI
system. “Steger behaved very well, and both NASA and SGI

engineers provided won-
derful technical sup-
port,” he says.

In the end, first place in
the competition went to
Shredder, a microproces-
sor-based program cre-
ated by German pro-
grammer Stefan
Meyer-Kahler. Teams
from the United States
and from Germany
placed second and third,
respectively. The MIT
team’s fourth-place
showing was a bit disap-
pointing, but by no
means devastating, ac-
cording to Leiserson.
Win or lose, collabora-
tions similar to the one
with the NAS division
are “the best way for
[our] group to improve
upon Cilk and
Cilkchess,” he says.

Learning by

doing
Working with Steger gave the Cilkchess
team specific insight into memory alloca-
tion, data locality, latency hiding, and
other important aspects of parallel com-
puting. Memory allocation, says
Leiserson, is one of the biggest questions
to tackle when running applications on

non-uniform, shared- memory multi-processor computers
such as Steger. Where can data be stored and how should it
be assigned to that storage space? “This experience with

memory allocation has led to some nice research and some
new algorithms that we wouldn’t have been motivated to
study without having confronted the problem in the field,”
says Leiserson.

An important characteristic of a chess program is its ability
to quickly search and retrieve data. Programmers typically
try to reduce latency or communication delays by directing
that data be stored in memory locations physically close to
the processors using the data. But Steger’s caching hardware
provided the team with a new way to speed up searches. A
cache retrieves large blocks of data, called cache lines, in
nearly the same time it would take to retrieve a single piece
of data. Cache space is created rather than directly allocated,
and filled only when it is physically needed by the system.
Connection time between memory and processors is there-
fore reduced, an effect known as latency hiding. “Running
such a dislocalized program as Cilkchess confirmed Steger’s
ability to effectively hide memory latency,” says Petersohn.

But this wasn’t the only useful feedback received by NAS
engineers. The MIT team also uncovered a pre-existing bug
that was causing a “hot-lock problem,” in Petersohn’s words.
This phenomenon occurs when many processors are waiting
to acquire exclusive access to the same data. While one pro-
cessor accesses the data, all of the other waiting processors
execute the same instructions over and over again. “This
problem was causing a substantial slow-down in the sys-
tem,” Petersohn says. In light of this discovery, NAS engi-
neers installed an updated version of the operating system,
resulting in a significant performance gain.

Currently, NAS researchers are collaborating with SGI to
develop an even larger Origin2000 system including 512
separate processors (see story, page 2). Dailey says he would
jump at the chance to use the 512-processor machine in
next year’s computer chess competition. “More processors
mean higher performance,” he enthuses. Petersohn cautions,

Game trees
Key to a winning chess

program is ‘deep
searching,’ the ability to
explore many alternative

branches in a tree of
possibility and weigh

each move and
countermove.

The horizon effect
During the third round

of the competition,
Cilkchess fell prey to

the ‘horizon effect,’ an
occasional inability to
see beyond the next

few moves. Its
competitor, Junior,

moved in for the kill.

PADERBORN UNIVERSITY

Continued from previous page

20 WINTER 1999

however, that adding more processors to the picture could
actually aggravate the problem of memory allocation.

Either way, Dailey is preparing Cilkchess for its next match,
implementing a new function he calls “temporal difference
learning.” In this approach, each piece and location on the
chessboard is assigned a number or weight of importance.
The computer plays a series of games with itself, adding up
the weights to become familiar with good plays in any given
situation. Asked whether his team plans to enter the im-
proved Cilkchess in the next World Computer-Chess Com-
petition, Leiserson is enthusiastic: “We’re always ready for a
battle!”

Holly Amundson is an intern in the NAS publications and media group.
She majors in materials science and engineering at California Polytechnic
State University in San Luis Obispo.

21gridpoints

vices thousands of miles apart to communicate and cooper-
ate. The philosophy behind Globus strongly echoes the ar-
chitecture of the early Internet, giving the IPG project the
heady air of history repeating itself. Defense researchers cre-
ated the Internet (then called the Arpanet) by interposing
phone lines and devices called “Interface Message Proces-
sors” (IMPs) between existing computers. (When the second
IMP was installed at Stanford Research Institute on October
1, 1969, it turned a single node at the University of Califor-
nia, Los Angeles, into part of a true network. The first pack-
ets of information were exchanged between UCLA and
Stanford four weeks later, on October 29.) Similarly, Globus
mediates between the existing computers and job-scheduling
systems at IPG partner sites. With a few extra keystrokes, a
researcher can submit a job at one site and specify that it be
computed at any other site, as if the IPG were a single giant
computer.

Many details must still be refined, but NAS researchers say
Globus and the IPG form such a close fit that they should
have no trouble meeting the IPG effort’s ambitious two-year
and five-year goals. “The functional testbed is an important
milestone for our two-year goal of a prototype production
environment,” says Bill Johnston, project manager for the
IPG.

Managing heterogeneity
The Globus Project got its start at the SC ’95 conference in
San Diego, where Ian Foster of Argonne National Labora-
tory and Carl Kesselman of the University of Southern
California’s Information Sciences Institute demonstrated

In October, thirty years to the month after the birth of
the Internet, computer scientists reached another
milestone—one that could prove as significant as the

Internet’s debut. Researchers at four NASA research centers,
the University of Southern California’s Information Sci-
ences Institute (ISI), the Energy Department’s Argonne Na-
tional Laboratory in Illinois, and several other institutions
inaugurated a fully functional prototype of a new “super-
Internet” for high performance computing. The Informa-
tion Power Grid (IPG), as the network is known, joins
supercomputers and storage devices owned by the partici-
pating organizations into a single, seamless computing envi-
ronment.

Researchers are already exploring the IPG’s capabilities and
limitations. The testbed allows remote operation of com-
puters and scientific instruments, matching of local jobs
with distant computing resources, and allotment of com-
putations too demanding for a single supercomputing cen-
ter to handle. “This is just the beginning of our progress
toward simple, powerful distributed computing,” says Bill
Thigpen, chief of the NAS Engineering Branch.

These first steps were made possible by Globus*, a set of
software utilities that allows supercomputers and other de-

Globus:
An Infrastructure for the
Information Power Grid
BY PETER ADAMS

* There is no relationship between the Globus metacomputing
toolkit and NAS researcher Al Globus, featured in the article on
page 4.

GLOBUS PROJECT

22 WINTER 1999

that linked high-performance com-
puters could work together well on
a single job. These two remain the
project’s co-principal investigators,
and in five years Globus has grown
to link more than 50 sites across the
country in the Globus Ubiquitous
Supercomputing Testbed Organiza-
tion (GUSTO).

In the construction of an environ-
ment like GUSTO or the IPG, the
bewildering variety of hardware and
software used by the nation’s

supercomputing centers makes an intermediary such as Glo-
bus indispensable. The situation is similar to a session of the
United Nations General Assembly, which can include hun-
dreds of people speaking dozens of languages that are mutu-
ally unintelligible. In order for the Assembly to function, its
members must somehow be able to understand each other
and, in turn, be able to make themselves understood.

The high performance computing community exists in
much the same state of heterogeneity, only here the diversity
resides in the system requirements of resources as varied as
supercomputers, storage systems, wind tunnels, telescopes,
and medical imaging devices. Us-
ers at one node on the IPG—
which currently links NASA facili-
ties at Ames, Langley, and Glenn
Research Centers with several aca-
demic institutions—may know
nothing about operating the sys-
tems available at the other nodes.

To solve its language barrier, the UN em-
ploys a skilled group of translators who can
simultaneously listen to a speech in one language and repeat
it in a second tongue. Instead of arbitrarily choosing one
language for its meetings, forcing each and every member to
learn to speak it fluently, the UN relies on this middle layer
of translators to bear the workload and keep the communi-
cation process between speaker and listener as seamless and

unobtrusive as possible.

A comparable intermediate layer,
with a similar emphasis on trans-
parency and utility, plays a key
role in the ongoing development
of the Grid. In Grid terminology,
this is “middleware,” or, as IPG
architect Bill Nitzberg of the NAS
Systems Division puts it, “a com-
mon layer of resources that vari-
ous users of different applications
and interfaces can access.” This
common layer then acts on behalf

‘This is just the
beginning of our
progress toward

simple, powerful,
distributed

computing...We’re
learning what the

future will be as we
progress.’

of the user, communicating with a heterogeneous set of re-
sources that may be down the hall or thousands of miles
away. For the IPG, middleware starts with Globus.

Linking the sites
In practice, Globus consists not of one monolithic software
package, but of several customizable tools from which sites
can select in order to manage heterogeneity. This adaptabil-
ity, in combination with Globus’s widespread use on the
GUSTO testbed, made it a good choice as the infrastructure
of the IPG’s middle layer, says Nitzberg. “When NASA set
about defining the IPG project, Globus clearly became one
of the core components,” he says. The NAS Systems Divi-
sion now provides the Globus project with research grants
totaling about $1.25 million per year.

The advantage of using middleware is that regardless of the
growth or mutability of the grid, local users remain capable
of running jobs. Nitzberg explains, “Globus lets people
work in their own world, whether that world is astrophysics
or aerospace design.” Even disparate disciplines use some of
the same resources, and Globus allows the users to gain ac-
cess to more or better machines while ignoring the addi-
tional complexity. “Basically, we don’t want our users to
have to learn anything new,” says Nitzberg.

To ensure this ease of use, much of the Glo-
bus-related work at NAS and the other NASA

sites involves taking standard tools and building in
more specific IPG needs. Among the things Nitzberg and

other IPG architects are incorporating from the Globus soft-
ware toolkit are a security infrastructure considered superior
to that provided by the UNIX or NT operating systems; an
interface for executing actions remotely; a capability for ac-
cessing data and manipulating files remotely; an infrastruc-
ture for fault monitoring; and an information service de-
scribing the state of grid resources. These tools serve as a
framework upon which further middleware, such as systems
for job queuing and problem routing, will be placed, says
Mary Hultquist, a member of the NAS grid environments
group.

The University of Southern California’s ISI and the NCSA
Alliance have used Globus for production computing work
for some time. With the creation of the IPG, many more
investigators outside the field of distributed computing will
regularly employ Globus. “In a GUSTO research environ-
ment, you only have one or two people at a site who use a
Globus tool, and they tend to know it quite well,” explains
Nitzberg. “Here, we’ll have new users reading the documen-

Continued on next page

More than 40 super-
computing centers have
installed Globus on their
systems, creating a testbed
that spans three continents
(left). NASA Ames Research
Center is a charter member
of the group, known as the
Globus Ubiquitous
Supercomputing Testbed
Organization (GUSTO). The
NASA Information Power
Grid, which includes Ames
as well as Goddard Space
Flight Center, Glenn
Research Center, and
Langley Research Center
complements and extends
the GUSTO network.

23gridpoints

tation and, never having seen Globus before, trying to make
it work.” To speed up learning, publication specialists at
NAS have written a “Quick Start” guide, the first in a
planned series of official Globus documents.

Accommodating users
The commissioning of the IPG testbed marks the comple-
tion of a major short-term goal of the effort. Thigpen calls it
a “a proof of concept” that “gives us a group of systems as a
springboard for further work.” But the establishment of a
technological infrastructure is just half the job. The other
half involves successfully merging the needs of several major
sites accustomed to acting independently.

Some of the inter-site issues that must be addressed by any
metacomputing system are relatively straightforward, such as
identifying the different computing and personnel profiles
of each site. NAS, for instance, “is the smallest site in terms
of computing power [committed to IPG], but is the largest
contributor of people-hours to the IPG project,” says
Hultquist. Subjects such as troubleshooting mechanisms are
more complex. “If users have trouble with resources they
are accessing, they need to be able to pick up the phone and
talk to someone who can fix it,” says Nitzberg, “This isn’t a
problem at NAS, where the computers are yards away, but
how do you ensure the problem is routed, traced, and re-
ported correctly when the resource is 3000 miles away?”

Discussions of inter-site relations can descend to an incred-
ible level of detail, such as the exact wording of an account
request form, says Hultquist, who is deeply involved in this
process. While these may seem like simple issues, she says,
dependable middleware and a common system of adminis-
tration are vital for the smooth working of the IPG. “I try
to look at issues from a user’s perspective,” she explains, “but
sometimes the only way to test these decisions is to watch
the testbed and see what happens. The key is to provide
grid functionality without adversely affecting users, and to
design policies that make becoming a part of the Grid
easier.”

Long-term goals
The future of both Globus and the IPG looks bright as the
Grid paradigm gains ground throughout the field of high
performance computing. Thigpen cautions, however, that a
large-scale, persistent, high-speed supercomputing network
remains a distant goal. Building the IPG is a process of
“moving toward what we believe is the future, and learning
what that future really will be as we progress,” he says.

Because supercomputing sites already exploit their machines
to the greatest extent possible, simply linking them to a grid
is not going to generate free computing cycles. Instead, the
work being done now will move the field closer to the elu-
sive goal of full utilization. The truly revolutionary benefits
will come, says Thigpen, when it is simple to run a comput-
ing job regardless of geography. “Right now we’re very con-

scious of what machine we’re running jobs on and where
that machine is located,” he says. “But the future of the Grid
will take us to an environment where we can [specify] what
we need and have the job run anywhere.”

Meanwhile, users at each of the IPG sites are pursuing their
own scientific problems, and are at the same time providing
invaluable information to the IPG’s builders. “By writing
Grid-enabled code, they fault-test our work and let us know
what we need to fix,” says Hultquist. “At the same time they
are preparing themselves for the future of computing.”

Peter Adams is a senior majoring in history at Williams College in
Massachusetts. He has worked as a summer intern for the NAS
publications and media group for the last three years.

‘In a research

environment, you only

have one or two people at

a site who use a Globus

tool, and they tend to

know it quite well. Here,

we’ll have new users

reading the documentation

and, never having seen

Globus before,trying to

make it work.’

Continued from previous page

24 WINTER 1999

Researchers collaboratively study a three-dimensional simulation of a reusable launch vehicle
in flight. Scenes such as this may become common as the aerospace industry adopts the
distributed, collaborative technologies embodied in the NAS Virtual Wind Tunnel.

Distance no barrier in
distributed, collaborative
Virtual Wind Tunnel

When NASA
established the
Numerical Aero-

dynamic Simulation program
in the early 1980s, it charged
the organization with accu-
rately predicting and repro-
ducing the aerodynamic per-
formance of a whole aircraft
using computers.* To make
these predictions useful, the
program was also directed to
study new ways of visualizing
the huge datasets resulting
from these simulations, per-
haps including virtual reality
systems that would allow an
aerospace engineer to “enter”
and explore three-dimensional
representations of this data.
By the mid-1990s, the Virtual
Wind Tunnel (VWT) project
in the NAS data analysis
group had largely fulfilled this
goal. One goal for NAS that
had not been spelled out, how-
ever, was that these virtual en-
vironments should accommodate whole crowds of people,
or that researchers should be able to participate in collabo-
rate virtual work sessions from great distances. Those goals
are new, formulated over the last several years by David
Whitney, designer of the VWT’s initial distributed infra-
structure, NAS data analysis group lead Steve Bryson, and
colleague Bryan Green.

The VWT software creates a fully immersive virtual envi-
ronment where researchers can interact with data spread
over complex three-dimensional fields. Inside the collabora-
tive workspace, this data can be portrayed in many different
forms and can be examined from any point of view. “Virtual
prototyping” software using some of the same principles as

the VWT has been available to the public for some time,
but none of the commercial products can handle the mas-
sive datasets created by high-fidelity computational fluid
dynamics (CFD) applications. The VWT software was spe-
cifically designed for datasets up to 200 GB in size.

In 1998 Green and Whitney, who is now a software devel-
oper at Amazon.com, began modifying the VWT’s architec-
ture to allow several people at geographically distant loca-
tions to participate in the same virtual session. The new
“Distributed, Collaborative VWT” passed its first major test
in December 1998, in a demonstration linking two users at
NASA Headquarters in Washington, D.C., with two users
at the NAS Facility in California.

* In 1996, the program was renamed the Numerical Aero-
space Simulation Systems Division.

Continued on next page

NAS SYSTEM
S DIVISION

BY HOLLY AMUNDSON

25gridpoints

The system, which will be demonstrated again in November
at the SC99 High Performance Networking and Computing
Conference in Portland, Oregon, is exactly the kind of appli-
cation NASA computer scientists have in mind as they con-
struct the Information Power Grid (see story, page 20). This
distributed supercomputing network will greatly expand the
data gathering, computing, storage, and collaboration oppor-
tunities available to researchers through their home termi-

nals. The collaborative VWT is
expressly intended to help widely
separated researchers explore com-
plex datasets together.

From mono to multi
In 1989 Bryson, then a member of
the Ames Human Factors Divi-
sion, and colleague Creon Levit
began work on the VWT. At first,
the system was intended to run on
a single computer and to support a
single user. In 1992, two years
after joining NAS, Bryson and
associate Michael Gerald-Yamasaki
devised a way to distribute the
computational work needed to

create and update the virtual scenes to several computers or
workstations. Their trick was to assign a central server to cal-
culate the geometry of each scene, while letting a separate
workstation run the application viewer. This arrangement
led directly to Whitney, Bryson, and Green’s work over the
past two years to enable several viewers to run simulta-
neously, each with its own point of view. When multiple us-
ers are working collaboratively inside the same simulation, a
single server continues to compute the geometry, while client
workstations render the geometry and display the results ac-
cording to the individual’s viewpoint. “The collaborative
aspect was a natural extension of the distributive part,” says
Green, the project’s visualization software engineer.

But “natural” doesn’t mean “easy.” For every client added to
the virtual workspace, more network bandwidth is needed to
handle the transfer of geometry from server to client.
Multicasting, one of the possible solutions to this problem, is
currently under consideration by Bryson and Green. Under
multicasting, the geometry is transmitted only once and all
users receive the updated material, therefore decreasing the
bandwidth necessary to support any given scene. “It’s the
difference between sending the geometry once total and once
per client,” Green explains. “Successful implementation of
multicasting would help increase performance of the VWT
application.”

Behind the Scenes
Multicasting is especially useful in a collaborative application
like the VWT, because there’s a lot happening behind the
scenes. The software converts massive columns of numbers
(a CFD dataset) into three-dimensional flowfields around a

digital model of an aerospace vehicle. The data are displayed
in stereo to create the illusion of depth. Immersive displays,
such as the Virtual Workbench in the NAS Visualization
Laboratory, put users directly in the path of these flowfields.
The user’s stereo visor tracks all head movements, causing
the scene to shift accordingly in near-real time. Using vari-
ous manipulation tools, the user can move about within the
flowfield and examine the complex structures, such as wake
vortices, that arise in time-varying flow simulations. Struc-
tures can be picked out and manipulated using a pen-shaped
“wand” whose position is also tracked in three dimensions.
(With all of this movement going on, Bryson notes, it’s im-
portant that the computer re-render the scene in 1/10 of a
second or less. A longer rendering period creates a discrep-
ancy between hand movement and visual feedback, destroy-
ing the virtual reality effect.)

Inside the VWT, flow information can be viewed in many
different forms, depending on the viewer’s needs. Data can
be displayed in the form of streamlines, streaklines, cutting
planes, particle paths, isosurfaces, tufts, or simple numerical
displays. One of the most distinctive tools is the rake, a
moveable line that emits particles into the flowfield, depict-
ing changes in the fluid flow in a particular region. Another
tool, the plane, contains nine grab points enabling the user
to resize and reorient the tool until it displays the desired
cross section. The user also has access to parameters such as
pressure, density, and temperature at every point in the
flowfield.

Donning a stereo visor for
the first time, the VWT
user enters into a world of
virtual wonders. With
wand in hand, the client
may rotate the simulated
aerospace vehicle, con-
fronting it head-on or
from any other desired
angle. Various tools dot
the virtual world, waiting
to be grabbed by the float-
ing 3-D cross hairs that
represent the client’s hand.
Each tool enables the user
to manipulate the
flowfields within the vir-
tual workspace differently;
one tool, for example,
paints the simulated world with an array of colored lines
showing where particles would flow according to the laws of
fluid dynamics. A rotation of the wrist may land the user in
the midst of these lines, face to face with the nose of a com-
puter-generated launch vehicle.

But while the VWT is visually stimulating and fun to play
with, it’s also a serious research tool for aerospace engineers.

Continued from previous page

A successful December 1998
demonstration linking

Distributed Collaborative
Virtual Wind Tunnel users at

NASA Headquarters in
Washington, D.C., with
others at NASA Ames
marked an important

milestone for the project: It
was the first time the VWT’s
capabilities had been tested
on a cross-country network.

When multiple users
are working

collaboratively inside
the same simulation, a
single server continues

to calculate and
render each scene,

while client
workstations merely
display the results.

26 WINTER 1999

It offers a quick and easy way for researchers to explore the
behavior of flow patterns at any point around the craft, dis-
covering irregularities that would be impossible to spot un-
der normal conditions.

Real-world tests
As with any piece of complex hardware or software, testing
of the VWT has revealed a few glitches and raised interest-
ing new questions, according to Bryson. With multiple users
inhabiting the collaborative workspace, for example, the
space can become cluttered with tools. Each client can see
all the other clients’ tools moving around, making it hard to
follow events. Preventing this kind of sensory overload when
multiple participants are using a virtual space is clearly a
problem that will need to be addressed in the VWT and in
future collaborative systems, Bryson says. The software also
needs to handle conflicts between users’ actions more
smoothly; right now, when two clients grab a tool at the
same time, there is a delay before the “loser” is notified. And
when users move around massive amounts of geometry, net-
work traffic jams can occur, increasing the time it takes to
re-render each scene. “The more geometry there is to be
moved around, the slower it’s going to be,” remarks Green.

But these problems are mostly minor, as the successful De-
cember 1998 demonstration linking NASA Headquarters
with NASA Ames demonstrated. This presentation marked
an important milestone for the project, says Bryson, since it
was the first time the VWT’s capabilities had been tested
over a cross-country network connection. The VWT appli-
cation had another important demonstration in Washington
last June, as one of only two projects chosen to represent
NASA in a presentation of U.S. government information
technologies to members of Congress. U.S. Navy officials
have also used the VWT and are evaluating it as a potential
tool for submarine simulations, according to Green. Regular
users of the system, meanwhile, include The Boeing Com-
pany and NASA’s Ames Research Center, Goddard Space
Flight Center, and Langley Research Center.

For the SC ’99 conference, the VWT team plans another
first: running the software on a multiprocessor
supercomputer at the NAS Facility rather than on a work-
station at the conference. Bryson and Green hope to use
Lomax, the new 512-processor Origin2000 system at NAS,
as the “compute engine” for their demonstration (see story,
page 2). “Having larger computer resources at our disposal
will enable us to examine larger data sets” and should also
make visualization faster, explains Green. If Lomax is not
available during the conference, the researchers will run the
VWT demonstration on an SGI Onyx2 platform using pre-
computed data.

Back at Ames, meanwhile, the data analysis group is cooking
up a new application based on the VWT’s technology. Nick-
named “Son of VWT,” the new software will run on a cen-

tral environment server and various other servers simulta-
neously, furnishing the ability to visualize several types of
datasets in a single virtual space. The original VWT runs on
a single server, limiting researchers to one type of data at a
time. “The key to this new application is to coordinate all
the servers to maintain the same level of interaction among
clients,” explains Bryson. Although all interactions will take
place within a single system, maintaining a close connection
between clients using different servers (in order to view dif-
ferent types of data) will be a challenge for the group.

Using the VWT’s new collaborative capabilities, more re-
searchers than ever will be able to experience having massive
amounts of aerodynamic data at their fingertips—literally.
Since the flowfield quantities
displayed by the VWT and
other visualization techniques
are computed rather than mea-
sured, an aerospace design can
be thoroughly evaluated long
before the first physical proto-
type is constructed. The
method has the potential to
“dramatically speed up” the
aerospace design process,
Bryson says. “Looking at the
whole process, the VWT is
cheaper than [using] the tradi-
tional wind tunnel,” Bryson
says. Traditional wind tunnels
do, however, represent the
physical world, the fastest and most accurate “simulation
environment” we have. Ultimately, says Bryson, “The tech-
nologies are complementary.”

The Virtual Wind Tunnel
puts massive amounts of

information at a
researcher’s fingertips
—literally. This means

that an aerospace design
can be thoroughly

evaluated long before the
first physical prototype is

constructed.

27gridpoints

continued from page 7

Continued from page 15

Holly Amundson is an intern in the NAS publications and media group.
She majors in materials science and engineering at California Polytechnic
State University in San Luis Obispo.

continued from previous page

Putting evolution to work...

Radical new architecture...

○ ○

Collaborative Virtual Wind Tunnel...

28 WINTER 1999

A
m

esAmes Research Center

Collaborative Virtual Wind Tunnel
Multiple participants at remote locations can now partici-
pate in virtual reality sessions allowing three-dimensional
visualization of simulated airflow around aircraft. (See ar-
ticle, page 24.)

Virtual Mechanosynthesis
Computational steering of molecu-
lar dynamics simulations creates a
virtual environment where re-
searchers can explore diamondoid
and fullerene molecules and use a
force-feedback device to experience
the forces between atoms.

Mars Landing Web Site
A web-based collaborative facility allows Mars researchers to
share and peruse proposed landing sites for upcoming Mars
Surveyor missions, using 3-D VRML scenes, science evalua-
tions, and an interactive Mars atlas.

The Virtual Collaborative Clinic
Advanced high-fidelity 3-D imaging and high-bandwidth
networks “bring the clinic to the patient” by allowing physi-
cians to share complex patient data for remote consultation,
diagnosis, treatment planning, and simulation.

Learning Technologies Interactive Media
The NASA Learning Technologies Project offers 60 interac-
tive multimedia packages communicating NASA-derived
content to the classroom.

Inside the Information Power Grid
The Grid, a consistent, open, standardized environment for
distributed heterogeneous computing, will give scientists
and engineers broader access to resources such as
supercomputers, data mining systems, scientific instru-
ments, and human collaborators.

Scalable Debugging for the Grid
Using a client-server architecture, the Portable Parallel Dis-
tributed Debugger (p2d2) isolates code that is not portable
from serial to parallel form and provides graphic views of
distributed data arrays.

Legacy Code Modernization Tools
New software tools automate mundane, error-prone parts of
code migration from serial to parallel platforms. The tools
analyze data affinity, specify data alignment, find optimal
data redistributions, and translate from source to source.

Parameter Study Creation and Submission
One obstacle to widespread acceptance of the Globus
metacomputing toolkit—the complex job control language
needed to set up and execute Globus jobs—has been side-
stepped using a new GUI-based tool for the creation and
submission of parameter studies on the IPG.

SC ’99 exhibit features 37 demos and
videos on NASA supercomputing
NASA will appear in full force at the SC99 High Performance Networking and Computing Conference in Portland, Oregon,
November 13-19, 1999, with presentations on everything from nanotechnology to Mars exploration and clusters of galaxies.

Continued on next page

512 Processor
Origin2000 System
As the result of an agreement
between NASA and Silicon
Graphics Inc., a 512-processor
Origin2000 computer was as-
sembled at Ames this summer.
The machine has 192 GB of

main memory and a 2 TB RAID disk subsystem, and in
early tests its cost/performance ratio outstripped that of the
CRAY C90 by a factor of 35.

The Charon Portable Parallelization Toolkit
Charon is a library of C and Fortran functions based on the
Message Passing Interface that safely help translate legacy
code into high-performance, highly scalable parallel code.

Programming Baseline for NPB
 The new Programming Baseline for the NAS Parallel
Benchmarks facilitates comparisons of parallelizing compil-
ers and tools by providing sample implementations of the
NAS Parallel Benchmarks with OpenMP, HPF, and Java.

Time-Varying Volume Rendering
By subdividing volumes into sub-blocks and updating only
fast-changing regions, a new hardware-assisted 3-D texture
mapping tool speeds volume rendering in time-varying
simulations.

Multisource Data Analysis
The VISOR system (Visual Integration of Simulated and
Observed Results) is a client-server testbed application for
the visualization and analysis of data from multiple sources,

29gridpoints

G
o

d
d

ar
d

G
le

n
n

Je
t

Pr
o

p
u

ls
io

n
 L

ab
o

ra
to

ry

No information was available at press time about the following
presentation from Ames Research Center:

High Performance Computing and
Communications / Computational
Aerosciences Program Video

Glenn Research Center

Exploration and Collaboration on the Virtual
Reality Immersadesk
Researchers at Glenn Research Center are exploring the ben-
efits of large-scale immersive displays for navigating complex
geometries and flow fields or stimulating collaborative re-
search.

National Propulsion Simulation System Video
A video from Glenn Research Center will describe the Nu-
merical Propulsion System Simulation, a high-fidelity, full-
engine simulation designed to reduce aircraft development
time.

Dynamic Load Balancing Tool
The Dynamic Load Balancing tool evens out the computa-
tional workload in parallel computations across all available
processors. It determines the optimal load distribution using
an algorithm incorporating the computation and communi-
cation costs from each process.

Aeroshark Pentium II Cluster
At Glenn Research center, a cluster of 64 Pentium II 400
MHz processors with 16 GB of RAM and a Gigabit
ethernet backbone has achieved 50% of the performance of
a 24-CPU SGI Origin2000 computer at a fraction of the
cost.

No information was available at press time about the following
presentations from Glenn Research Center:

Heterogeneous Cluster - NPARC

Heterogeneous Cluster - NPSS 1D

Goddard Space Flight Center

The Digital Earth Workbench
The Digital Earth Workbench uses
immersive, interactive virtual reality
tools to display multiple layers of infor-
mation on the geological, biological,
climatic, anthropogenic, and other
forces affecting the Earth.

Simulating Clusters of Galaxies
Using a the PKDGRAV gravitational simulation tool and a
new “volume renormalization” technique, the evolution of
clusters of galaxies spanning a significant portion of the
Universe was simulated at varying resolutions.

Images of Earth and Space: SC99
This narrated video presents visualizations of observed and
simulated data from NASA-sponsored studies of the X-33
aerospace vehicle, Mississippi river flooding, Mars rover
simulations, huge basins on Mars, merging neutron stars,
and other subjects.

Jet Propulsion Laboratory

Distributed Mission Simulation
This JPL project aims to develop virtual platforms for test-
ing and validating the integrated systems involved in NASA
space missions, from spacecraft and payload to instrumenta-
tion and data uplinks and downlinks.

Digital Sky Virtual Observatory
A prototype high-performance computing system being de-
veloped by the Digital Sky Project will access and inter-re-
late large, geographically distributed datasets from multiple
sky archives.

Martian Rover
Simulations
Rover flight software can be
tested using simulated Martian
terrain and simulated rover hard-
ware, aiding design analysis and

mission planning risk analysis.

ParVox: Visualization of Large 4-D Datasets
The ParVox scalable parallel volume rendering system is de-
signed to help researchers visualize very large, time-varying
datasets with multiple variables.The program runs on the
Cray T3E and the HP Exemplar using MPI 1.4.

Remote Exploration and Experimentation

such as wind tunnel measurements and computational fluid
dynamics simulations.

High Performance Computing and
Communications / National Research and
Education Network Video
The NASA Research and Education Network (NREN) is
NASA’s cornerstone of the Next Generation Internet.
Working with federal agencies, academia and industry part-
ners, NREN is aggressively meeting the challenge to provide
high performance networks enabling exciting, next genera-
tion applications.

Continued from previous page

30 WINTER 1999

La
n

g
le

y

A video and demonstration will lay out the goals of the REE
project:: to equip future space science missions with
supercomputing technology, support onboard processing of
science data, fully utilize space-based instruments, and miti-
gate communications bottlenecks.

Pyramid
Pyramid is an advanced object-ori-
ented software library supporting par-
allel adaptive mesh refinement for
large-scale scientific and engineering
simulations.

MODTOOL
Software integrating optics design, CAD modeling, and
structural tools is being used at JPL to reduce the time in-
vested in the design and analysis of microwave- and millime-
ter-wave sensing instruments.

Conterminous US Landsat Mosaic
JPL supercomputers have constructed a 200-gigabyte mosaic
of 430 Landsat images of the conterminous United States, to
be used for U.S. Air Force flight simulators

Nanoelectronic Modeling
A simulation tool being developed at JPL allows researchers
to explore the physics of nanoscale devices and objects such
as resonant tunneling diodes, quantum wells, quantum dots,
and molecules.

Langley Research Center

Multidisciplinary Design
Optimization Video
The MDO process uses fast, high-
fidelity simulations of realistic aero-
space vehicle designs to reduce de-
sign cycle time. Langley researchers

are working to integrate MDO elements across networked,
heterogeneous workstations and supercomputers.

Intelligent Synthesis
Environment (ISE)
NASA’s ISE initiative aims to give sci-
entists and engineers the ability to
work together in virtual environments
and to simulate the complete life cycle

of products and missions before physical construction be-
gins.

